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Abstract

The ultimate objective of turbomachinery vibration analy-

sis is to predict both the overall, as wel Ias component dynamic
response. To accomplish this objective requires complete
engine structural models, including multi-stages of bladed
disk assemblies, flexible rotor shafts and bearings, and engine

support structures and casings. In the present approach each
component is analyzed as a separate structure and boundary
information is exchanged at the inter-component connections.
The advantage of this tactic is that even though readily
available detailed component models are utilized, accurate
and comprehensive system response information may be
obtained. Sample problems, which include a fixed base rotat-
ing blade and a blade on a flexible rotor, are presented.

Inlroducdon

A multitude of methods currently are available for the

dynamic simulation of turbomachinery blading. Most meth-
ods employ simplifying assumptions to ease the analysis
process. Few simulation capabilities exist which are capable
of treating both the complex geometrical and material con-

figurations of modem day blading as well as the rotational
effects associated with turbomachinery. The reason for this
limitation is the incapacity of the existing rotational dynamic
codes to accommodate the very large number of coordinates
required to model the complex geometries, and the inability of
the general t-miteelement programs (F.E.), which can handle
large complex configurations, to include all of the rotational
effects. As a result of this situation, there is limited under-

standing about the effects of rotation on the elastic vibrations
of turbomachinery components.

The ultimate objective of mrbomachinery vibration analy-

sis is to predict the overall, as well as individual component,
dynamic response. To accomplish this objective, complete
engine structural models are required, including multistages
ofbladeddiskassemblies,flexibleshaftsand bearings,and

enginesupportstructuresand casings.Clearly,analysisof

suchsystemswouldrequireimmense modellingcapabilities

andcomputationalefforts.

Two alternativeapproachesmay beproposedforcomplete

enginevibrationanalysis.Forthefirstapproach,simplifying

approximationsandreducedorderstructuralmodelsareused

toreducethecomplexityandcomputationaleffortrequiredfor

the analysis. For example, rotordynamics specialists may
consider a system constructed of a flexible shaft with a rigid
disk,ora multiplenumberofrigiddisks,eachdiskhaving

translational and rotational inertias. Disk flexibility effects are

assumed negligible.

Bladed-disk specialists, on the other hand, deal with flex-
ible disks, but normally assume rotordyuamic effects are
negligible. For many real designs these assumptions are valid,
however, with new designs, which often are lighter, more
flexible, and have more complex geomemes and interactions,
it is becoming unclear as to which effects are important and
therefore must be included for reliable structural response
simulations. While the use of simplified approximation ap-
proachmay leadtoreasonableestimationsoftheactualvibratory
response,importantphenomenamay be overlooked,and de-

tailedresponseatdiscretelocationsmay notbecaptured.

The second approach entails using complete engine compo-
nent models, and then applying a "building-block" approach
in the analysis. For this approach, each component is analyzed
as a separate structure and boundary information is exchanged
at the intercomponent connections. The advantage of this
tactic is that both comprehensive overall system response is
obtained and readily available detailed component models are
utilized.

The purpose of the present work is to study blade vibrations
in a general framework which includes rotational effects, as
well as the blade's interactions with its supporting structures.
A t'mite element basis will be used since this is the most

complete and commonly used blade analysis technique cur-
rently available. Rotational effects will be included by supple-
menting the traditional t'mite element property matrices with
rotational terms. The influence of structural attachments, such

as shaft and disk flexibilities, will be included by applying
sufficient boundary conditions. Both transient and steady state
solution capabilities will be supplied.

In comparison to the large number of studies performed on
turbomachinery components, I relatively few undertakings
have addressed the problems associated with complete engine
vibration analysis. For turbomachinery, bladed disk interac-
tions have been studied frequently. 2 Cyclic symmetry,
mistuning, aeroelastic analysis, and steady state response,
among others, are all areas which have been investigated.
Another commonly examined system is the coupled shaft-



disk. In Rcf. 3 two radial appendages, used to simulate the
disk, were attached to a flexible shaft and critical speeds were
determined to vary with appendage flexibility. In Ref. 4 a
uniform disk, which is modeled by its one-nodal diameter
mode, is attached to a flexible shaft, and resonant speeds are
computed. Reference 5 presents a nonrotating multidisk on a
shaft finite element model while Ref. 6 evaluates the effect of

varying blade, disk, shaft fiexibilities on resonant frequencies.
Reference 7 examines flexible disks and shaft as well as

support structure asymmetry. In Refs. 8 and 9 a transient
vibration analysis of a shaft with a flexible disk disturbed by
unbalance is studied.

While numerous engine component interaction studies have
been made, few address the problem of developing general

analytical schemes for complete engine analysis. One of the
more extensive vibration codes which has been developed for

turbomachinery vibration analysis may he found in Ref. 10.
This modal based code, although limited to constant rotational

speed and simplified disks, performs both steady state and
transient analysis of engine systems consisting of flexible
disks, shafts, bearings, and engine supports. Maybe the most
comprehensive development for entire engine vibration analy-
sis is found in Ref. 11. In this reference a complete, and

general, scheme is presented for coupling finite element, or
modal, models of blades, disks, shafts, and any other relative

engine components into a system analysis. The formulation
developed in this reference is used in the present study for
generating the equations of motion of the blade.

Derivation of Comtxment Eouation of Motion

For practical vibration analysis it is desirable to utilize
existing component models, which in many eases are gener-
ated from finite elements. As aresult, it is beneficial to provide

a general component formulation which can accommodate
rotational effects within a finite element framework.

The momentum of motion in a body-fixed (commonly used
finite element assumption) coordinate system (Fig.l) is writ-
ten as:

O = [Mix (1)

where M is the body-fixed (rotating) mass matrix, defined in

the body-fixed coordinate system, and x is avector of absolute
velocities. The absolute velocity is the sum of the body-fixed
velocities resulting from elastic deformation plus the base
velocities resulting from motions at the component boundary
where it isconnected to the restof the structure. Forcontinuity,

the consistent mass matrix generated from the finite element
based formulation is used.

Expanding Eq. (1) by partitioning with respect to finite
element nodes:

0 = I mz2 _ _2 (la)
• °°

L/%l .........

n is the total number of nodes in the body. Notice that for a
consistent mass formulation there normally is inertial cou-
pling between translations and rotations and between adjacent
nodes. While this coupling may be accurately represented by
a lumped mass matrix with sufficient nodal refinement for
nonrotating systems, itpresendy isunclear whether the lumped

mass is adequate for rotating systems.

Following the strategy ofRef. 11, which is repeated here for

clarity, the absolute velocity of node i is:

xi = if' i l Ji

where _x and _o are the elastic displacements and rota-

tions with respect to the body-fixed system, F is the position

of the node from the body-fixed origin, and I7 and if' are

the linear and angular velocities of the body-fixed coordinate

system with respect to any inertial system.

The I'_o term in Eq. (2) is a cross product matrix operator
defined as:

0 -w, % ]
[no] -- w, 0 -w_ (3)

- wy wX 0

where wx, wy, and wz are rotation rates of the body-fixed
coordinate system in body-fixed coordinates. Using the fol-

lowing transformation from inertial to body-fixed, the base
rotations are defined as:

I-tin Oz cm 0 z Ox O) + O r sin 8 z

w, L o, -o x 1

where 0 x, 0y, and

-- JR1

bz+ a

(4)

0z are rotations of the inertial system,
and G is the nominal rotational speed. R is a transformation
matrix from inertial to body fixed coordinates.
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The translational and rotational velocity vectors in Eq. (2)
are defined as:

I ]if" = •

{: *]
,-x ry r,}

F =

Substituting the above terms into Eq. (2), and then into

Eq. (1) yields:

(_ = M{ $7+ if'+ _I (F + &:)+ t_u} (6)

DifferentiatingF_,q.(6)withrespecttotimeand notingthat

M isdefinedina rotatingcoordinatesystem:

a8
-£-,

+ ta2M{¢+ ¢ + a_(7 + Sa) + _} (7)

where: 122

_'_O

--O w

_'_O

--O--

_'_O

(8)

Completing the equations of motion by including both
internal and external forces:

b'_u + C Su+K_'_ = M{I'7+ 1_:+ _1M

(_ + _)+ ,_}+ ?ur (9)

where C and Kare damping and stiffness matrices, and F_T

is a vector of externally applied forces.

At this point it is informative to examine Eq. (9) for three

special cases.

(1) Fixed Base (17 = if" = V = I_' = 0).. For this

case the base of the component is constrained, meaning that

the supporting structure is assumed infinitely rigid and there-
fore does not contribute to the dynamics of the component

(e.g., flexible blade on a rotating rigid shaft). For this case

Eq. (9) reduces to:

M_ + {C- Mk"2i - D.2M}_u

+ {K- M_ 1 - i'22M_l}b_ = M_IF

+ t')2M_IF + FEXT (9a)

(2) Fixed base, constant rotational speed (fl = constant,

= 0).

Mc_I_ + {C- Mnl - ta2M}

+ {K- 122M121} b_ = _'12M121_" + FEX-/- (9b)

(3) Fixed base, constant rotational speed, and lumped Mass

(translational only). For this case M_ 1= D.2M and the velocity
and displacement terms associated with M reduce to the well

known gyroscopic and centrifugal softening terms, respec-

tively.

Mb_ + {C- 2riM} 8u + {K- D.2M} b'a

= _2M_ + FEX T (9c)

Sample Problem One

The first sample problem is used to assess both the effect of

displacement and velocity dependent rotational terms, and



lumped and consistent mass matrices on the free vibration
modal frequencies. A simplified blade model is used so that a
physical understanding of the effects of each of the terms may
better be obtained. It is particularly useful to study a model
where each of the radial, in-plane bending, and out-of-plane

bending modes are elastically decoupled.

The blade model consists of a fixed base, uniform beam,

having both radial and bending degrees of freedom (Fig. 2).
The beam is rotadng with aconstant rotational speed as shown
in the figure. Five beam type f'mite elements, which contain
both elastic and geometric stiffness, are used to model the
blade. The model has 4 nodes and 24 degrees of freedom. FirsL

Eq. (9c) (lumped mass) is utilized to calculate natural frequen-
cies. Then, the effect of consistent mass is studied via Eq. (9b).

Figure 3 shows the effect of geometric stiffness on the
modal frequencies as a function of rotational speed (centrifu-
gal softening terms are not included). The geometric stiffness
is computed from the centrifugal load acting on the blade due
to rotation, then inserting the force into the geometric stiffness
matrix. As depicted in the figure, the geometric stiffness
causes the bending frequencies to increase with speed, while
the radial mode remains constant. Since the beam has identical

properties for both in-plane and out-of-plane bending, they are
equally effected by geometric stiffening, and thus their fre-
quencies increase the same. The radial mode remains un-
changed with increasing speed because there are no geometric
stiffness terms associated with the radial degrees of freedoms.

(i.e., The frequency of linear spring remains constant regard-
less of how much it is stretched.) Both the radial and bending

mode shapes do not change, at all, with speed.

The results shown in Hg. 4 include geometric stiffening
affects, as well as displacement dependent (centrifugal soften-
ing) rotational effects. The softening terms, which act in the
two in-plane perpendicular directions (y-z, Fig. 2), decrease
the modal frequencies for both the radial and in-plane bending
modes. The in-plane bending modes, although considerably
reduced, continue to increase with speed because of the
strength of the geometric stiffening. The radial mode, on the
other hand, decreases with speed because it is uninfluenced by
geometric stiffness. Ultimately, the radial mode becomes
unstable at higher speed.

The results shown in Fig. 5 include geometric stiffness and
velocity dependent (gyroscopic) rotational effects. The soft-
erring terms are not included. The gyroscopic terms, which act
in the same two perpendicular directions as the softening
terms, differ from the softening terms in that the gyroscopics
are cross coupled. In other words, the gyroscopic force in one

perpendicular direction is dependent on the velocity in the
other direction, and vice a versa. The effect of the gyroscopic

terms is to stiffen both the in-plane bending modes and the
radial mode. Because of the coupling between in-plane modes,
the radial and bending modes become almost indistinguish-
able. As with the softening effect only results, the out-of-plane

modes are unaffected by the gyroscopics.
Figure 6 depicts the results of including geometric stiffness,

centrifugal softening, and gyroscopics. In this ease, all of the
modes become stiffer with speed, except for the first in-plane
bending mode. This is in contrast to the previous results where
only the radial mode showed a decrease in frequency as a
result of the softening effects. In fact, the radial mode, which
approached instability at high speed when softeningalone was
considered, actually increases in frequency. This increase is a
result of the gyroscopic coupling between this mode and the
in-plane bending modes. The decrease in stiffness of the lust
in-plane bending mode also is a result of the in-plane gyro-
scopic coupling. For the in-plane bending mode, the coupling
effect is to decrease the frequency. Another result of the
coupling, is the decrease in correlation between the rotating
and nonrotating mode shapes. This is particularly evident at
higher speeds. For example, at a nondimensional rotational
speed of 6, the radial and second bending in-plane modal
correlation is only 30 and 60 percent, respectively. This lack
of correlation is indicative of sizable changes in the mode
shapes.

All of the results presented thus far have been obtained by
using a mixed consistent and lumped mass formulation. While
a consistent mass matrix was used for the coefficient of the

acceleration vector, a lumped mass matrix was used for the
velocity and displacement terms (Eq. 9). For the results in
Fig. 7, the lumped mass matrix was replaced by the consistent
mass matrix for all coefficient matrices. The results in Fig. 7
are very similar to those produced by using lumped mass
(Fig. 6). Altough not distinguishable in the figure, there actu-
ally is a 15percent difference in the first in-plane mode at high
speed (nondimensional speed = 6). Also, beyond a speed of 2,
there are no modes that correlate with the nonrotating radial
mode. In other words, the purely radial mode has vanished.

Figures 8 to 10 show how each of the in-plane modes are
affected by the inclusion of the various rotational terms. The
out-of-plane modes are not included because they are affected
only by geometric stiffness. Figure 8 depicts the radial mode's

independence from geometric stiffness, softening from dis-
placement dependent terms, and stiffness due to gyroscopics.
Figure 9 shows the first in-plane bending modes decrease in
frequency due to combined softening and gyroscopics, and
increase in frequency from all other effects. Figure 10presents
the second in-plane bending mode's increase in stiffness due
to all combinations of rotational effects.

The present example has demonstrated the interactions
between the in-plane radial and bending modes through veloc-
ity dependent cross coupling. In particular, the stiffening and
softening of the radial and bending modes, respectively, has
been shown. A question which arises from these results is
whether the radial mode always serves to soften the bending

mode, and conversely, whether the bending mode always
helps to stiffen the radial mode. In an attempt to setde this
issue, the radial and bending modes were inspected for various



radial to bending mode stiffness ratios. The radial to bending
mode stiffness ratio was varied by increasing theblade radial
stiffness.

The stiffness rafio's influence on the in-plane radial and

first bending modes are shown in Figs. II and 12. For the
lowest ratio (r = 1), where the nonromting frequency of the
radial mode equals that of the bending, the radial mode
becomes unstable when the rotational speed reaches the radial

mode's frequency. This result signifies a lack of interaction
between the radial and bending modes because the identical
result is obtained for a single degree of freedom, rotating,

linear spring-mass system. Results at r= 1 are unavailable for
the bending mode since the system is radially unstable. At
intermediate stiffness ratios (r = 5 and 10), the radial and

bending modes are coupled, and the stiffening of the radial
mode along with the softening of the bending mode, previ-
ously seen, are evident. At high stiffness ratios (r = 100), the
radial mode is unaffected by rotation, and in contrast to lower
ratios, no apparent softening effects are transferred from the
radial to bending mode. The implication of these results is that

bending behavior is unmodified by the radial mode when the
radial mode is very stiff, and significantly modified when the
radial mode is in the range of the bending mode stiffness.

Sample Problem Two

The previous sample problem provided insight into the
effects of the various rotational terms. Nevertheless, the

necessity of including the terms is best determined through
actual problems. To accomplish this objective an actual rotat-
ing propeller blade, term propfan blade, is analyzed.

The propfan blade, in contrast to conventional propellers, is
thin and flexible, of low aspect ratio and high sweep (Fig. 13).
As a result of this complex geometry, bending, torsional, and
radial modes all are highly coupled. Finite element analysis is
required for accurate structural analysis. 13

The Finite Element program MSC/NASTRAN was used to
model the propfan. Use of this program is advantageous
because of its capability to model the complex geometry of the
propfan as well as analyze the large displacement (geomemc
nonlinear) response of the flexible blade due to rotation. A
limitation which NASTRAN does have is its inability to

automatically include centrifugal softening and gyroscopic
effects. These additional terms were incorporated manually
into a NASTRAN combined geometric/normal modes solu-

tion sequence through a special NASTRAN programming
language (Ref. 13) and the utilization of Eq. (%).

Figures 14 to 16 depict the variation of the blade natural
frequencies as a function of rotational speed. In Fig. 14 the
geometric stiffening effect is shown to increase all six of the
blade's fundamental modes. The relationship is nonlinear since
the stiffening forces are related to the rotational speed squared.
The results in Fig. 15 are generated by including both the

velocity (gyroscopic) and displacement (softening) terms. The
combinedeffect of including these terms appears tobe relatively
small, except at high rotational speeds where there is consider-
able difference from the results presented in Fig. 14. Figure 16

compares the effect of including the softening terms along
with the geometric stiffness versus including the geometric
terms alone. As displayed in this figure, the softening effect is
significant, demonstrating the need to include this term for
reliable blade analyses. The gyroscopic terms also were exam-
ined but their effect, for this blade, was negligible.

Comt_nent Interactions

In the examples presented thus far single component sys-
tems with fixed boundary conditions were studied. To deter-
mine the effect of multicomponent interactions, a simple, two

degrees of freedom, nonrotating system was used (Fig. 17).
Specifically, this system was used to assess the possible range
of interactions between a bladed assemblage and a shaft. This
system also is identical to a two degrees of freedom vibration
isolator. The study of this system is important because it is
imperative to recognize the boundary between where isolated
component models are reliable, and where coupled system
models are required. For this simplified representation of a
bladed-assemblage on a shaft, the blade mass is taken as the
sum of all blades in the assembly, and the disk mass is added
to the shall

Figure 18 shows blade and shaft normalized frequencies for
varying ratios of blade and shaft frequencies and mass. As
demonstrated in the figure, the extent of the coupling effect is

dependent on both the blade to shaft mass and frequency
ratios. The mass ratio effect is expected since light blades
would have tittle influence over shaft response, and con-
versely heavy shafts would act similarly to fixed blade
supports. Consequently, for small mass ratios decoupled com-

ponent analyses are suitable.

The effect of blade to shaft frequency ratio is less clear
because the coupled system frequencies may increase or de-
crease depending on whether theratio is less than or greater than
1.0. For very soft blades (r = 0.01) neither the blade or shaft
frequencies are effected, regardless of mass ratio. For ratios
between 0.01 and 1.0 the blade frequencies decrea_ with
coupling while the shaft frequencies increase. For ratios above
1.0 the opposite effect is seen where the blade frequencies
increase and the shaft frequencies decrease. At a ratio of 1.0,
where the blade and shaft frequencies are identical, there is a
switching of modes where the blade mode goes from the lower
to higher mode, and the shaft mode goes from higher to lower.

The application of these results to real problems may be
implemented by considering actual physical masses or by
utilizing effective modal masses. By utilizing modal masses,
a more accurate blade to shaft mass ratio will be constructed.

For example the bending mode of the shaft may be coupled
most closely to the blade radial mode in which case the shaft



bending mode modal mass would be compared to the blade
radial mode modal mass. Similarly, for a system where the
shaft was relatively stiff, and the blade was coupled to a
flexible disk, the modal masses from the blade and disk would

be used in the ratio.

Satanic Problem Three

In this sample problem, the previously presented flexible
blade model is coupled to a flexible shall The coupled model

(Fig. 19) represents an extreme case because a large unbalance
is exerted onto the shaft by the single blade. The model
consists of 9 beam elements and 11 six-degree-of-freedom
nodes. The blade and shaft have separate, but coincident,
nodes at the boundary where they are connected. The ratio of
blade to shaft modal mass for the first bending mode is 0.15

and the frequency ratio is 1.0. The entire system is supported
on bearings and is spun about the shaft's longitudinal axis.

The previously developed equations of motion (Eq. 9) are
used for the dynamic modeling of the blade and shaft. Infor-
rnation then is exchanged at the blade-shaft boundary to
couple the blade-shaft dynamics (Fig. 20). As shown in the
figure, the blade has influence by exerting boundary force.s
onto the shaft, and the shaft effects the blade through a
combination of boundary displacements, velocities,
and accelerations.

Three sets of transient vibration data were generated. The
first set (I) include.el ali ro_tional effects for both the shaft and
blade. The second set (II) included centrifugal blade softening
and shaft gyroscopics. Shaft centrifugal softening and blade
gyroscopies were not included. As previously mentioned, this
is a common assumption made by blade and shaft analysts.
The third data set (III) included blade and shaft centrifugal

forces only. Gyroscopic and softening were not included for
the blade or shaft. An externally applied step load was applied
to dof4 on the shaft with a direction in the plane of rotation and

perpendicular to the blade. A transient dynamic analysis was
performed and displacements were computed for each of the
three cases.

Figure 21 shows Wansient displacements for four locations
(4, 19, 20, and 21, Fig. 19) on the system for each of the three
cases (I to III). The rotation rate was equal to one-fourth of the
frequency associated with the blade and shaft first bending
mode. DOF 19, which is the blade tip lateral displacement

perpendicular to the rotational plane, is unaffected by rotation
up to the time when the step load is applied
(T = 15 see). Subsequent to this time, the resulting shaft
deflection produces out of plane coupling and displacements
in the 19 direction. As depicted in the figure, there is minimal
difference between case I and II, and significant differences
for ease III. Figures 21(b) to (d) show similar results for two
other blade DOF's and the shaft DOF where the step load is

applied.

The results shown in Fig. 22 were generated by repeating

the previous transient analyses but ata higher rotational speed.
For these results, the rotational speed was increased to one-
half of the first bending mode frequencies. The results in this
figure are similar to the previous figure. The main difference
is that the absolute displacements are larger because of the
larger rotational speed. In general, for all the DOF's, rotational
speeds, and eases run, there are insignificant differences
between cases I and II. This indicates that the omission of

blade gyroscopics and shaft centrifugal softening is a good
approximation.

Summary of Results

1. A practical method for rotating coupled system transient
analysis was presented in this paper. This method is advanta-
geous because it is based on FE methodologies and allows for
independent modelling and analysis of components.

2. A uniform, rotating, beam analysis was used to deter-
mine that, without gyroscopics, centrifugal softening has a
destabiliTing effect on the radial mode alone. When gyroscopics
are included, all in-plane modes are coupled. AS a result,
instabilities, or even stiffening effects, may occur in any of the
modes. Out-of-plane modes are affected by neither softening
or gyroscopics.

3. Except at very high rotational speeds, the differences in
natural frequencies between the consistent and lumped mass
matrix is insignificant.

4. From analysis conducted on an actual propeller blade
model, it was determined that centrifugal softening effects are
significant, and that gyroscopics may be neglected,

5. From a simple, two DOF, nonrotating model used to
represent a blade-shaft system, it was found that significant
dynamic interactions occur when the blade and shaft fre-
quency ratio, as well as the mass ratios, are of the same order.

6. From a fully coupled, rotating, blade-shaft analysis the
importance of shaft gyroscopics, blade softening, and the
exchange of loadings at the blade-shaft boundaries, was
demonstrated.
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